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Abstract. A mechanism for instanton induced chiral symmetry breaking in an extended QCD model (QCD
with fundamental scalars) is proposed to describe quarks and gluons inside a baryon. The model Lagrangian
that we use has the same symmetry properties as QCD. The scalar fields are shown to develop vacuum
expectation values in the instanton background and generate masses for the three generation of quarks.
The minimization condition is also used to break the flavour symmetry to make the s-quark heavier that
the u and d quarks.

I Introduction

The mechanism of chiral symmetry breaking in QCD and
consequent mass generation for quarks is an important is-
sue. In the absence of explicit mass terms for the quarks,
the Lagrangian for QCD has exact chiral symmetry
SU(Nf )L×SU(Nf )R, in addition to U(1)V (baryon num-
ber conservation) and U(1)A which, as is well known, is
violated by quantum effects. Apart from the issue of the
non-trivial nature of the QCD vacuum with the quark
condensate < 0|q̄q|0 >6= 0, the nature of the chiral phase
transition in QCD at finite temperature has been stud-
ied in [1] as well as in [2] and [3] making use of instan-
ton type non-perturbative fluctuations of the gluon field.
These studies revealed the fact that instanton type fluc-
tuations of the gluon field are dominant in the QCD vac-
uum. At zero temperature, the effect of instantons in the
QCD vacuum and in particular, understanding the na-
ture of chiral symmetry breakdown has been initiated by
’t Hooft [6] as also in [5], and [7] and the related earlier
work of Raby [4]. The work of these authors was extended
by Caldi [8] who showed that the instanton induced multi-
quark interaction i.e. the “effective interaction” found by
’t Hooft for a colour SU(2) gauge theory with N flavours
of massless quarks, produces a spontaneously generated
quark mass in a Hartree-Fock treatment. Subsequently,
Dyakanov and Petrov [9] proposed a mechanism of spon-
taneous chiral symmetry breakdown based on the delo-
calization of zero fermionic modes of the Dirac operator
in the presence of instantons. Here the Pauli-Villars reg-
ularization introduces an effective momentum-dependent
mass M(p) which is identified with the quark effective
mass. The bare mass m for the quark, although intro-
duced in the beginning, is taken to be zero eventually.
Subsequently, in [10] an effective Lagrangian was used at
low momenta of the σ model type involving quarks with
a momentum dependent mass interacting with the chiral

field to calculate the nucleon mass and nucleon σ term.
In the studies of references [1] (on the nature of the chiral
phase transition) and [4] (on the phenomenogical aspects
of the η-decay width) an “effective theory” with the de-
sired properties has been assumed. The usual practise fol-
lowed by these authors to break the symmetry is to add
a term c(detM + detM†), where M is a colour singlet
complex Nf ×Nf matrix.

In this paper, we study the issue of instanton induced
chiral symmetry breaking in an interacting model of
quarks and gluons along with fundamental scalars de-
scribed by a colour-singlet Nf × Nf complex matrix, al-
lowing the scalars to have only a kinetic energy term and
Yukawa coupling with the quark fields.

We briefly motivate the model and outline how it dif-
fers from other mechanisms. The low energy behaviour of
QCD still eludes explicit calculations. Effective theories
like the Gell-Mann Levy linear σ-model are used to give a
low energy field theoretic description of strong interaction.
The low energy phenomenology involving the spectroscopy
and static properties of the baryons prefer the presence of
pions along with quarks and gluons as illustrated by the
success of chiral bag models and non-relativistic quark
models. At present there is no reasonable explanation from
QCD as to how these pionic degrees of freedom might arise
and how they might be incorporated in QCD. Recently
however, the chiral sigma model with quarks substituted
for nucleons [14] has found support as a reasonable de-
scription of the nucleon [15], strong interaction properties
at finite temperature and baryon density [17,16,18] even
at scales well above chiral restoration, as well as weak in-
teraction properties [19]. It has also been shown that the
chiral linear sigma model with quarks, when coupled to
gluons can be asymptotically free [20]. Furthermore, lat-
tice studies [17,16] indicate that the chiral sigma model
with quarks reproduce QCD lattice results rather well at
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finite temperature with the pions and sigma being ele-
mentary for all T > Tχ except not as Goldstone bosons.
However gluons were neglected in these references.

In this paper, the model Lagrangian consists of the
usual QCD Lagrangian and colour singlet scalar multi-
plet, has SU(Nf ) × SU(Nf ) flavour symmetry which en-
tails taking σ = σaλa, π = πaλa collectively denoted by
a complex Nf × Nf matrix M (where λa’s are the usual
Gell-Mann matrices) and is a possible candidate theory for
strong interactions, in a phase of the theory (dictated by
initial conditions on the QCD and Yukawa coupling and
the renormalization scale µ) where not only the quarks
but also the scalar and pseudoscalar mesons contained in
M are elementary.

At this juncture we wish to also distinguish our ap-
proach from the many papers that have been written on
this subject. The main differences with the references [1–
3] is that we look at the zero temperature case and do
not use the low energy effective Lagrangian of ’t Hooft [6].
Instead, as we have explained earlier, our starting point
is QCD with fundamental scalars in which it differs also
from [9] in that we do not have a mass parameter to start
with but is generated due to the Yukawa coupling. It is
also different from [1] and [4] in that we do not add at the
beginning c(detM + detM†), but instead generate such
a term explicitly from the zero modes of the Dirac oper-
ator by integrating out the quark fields in the instanton
background. A similar approach to explain small fermion
masses in QCD has been considered in [13] for a single
component scalar field. The approach followed here is sim-
ilar in spirit to [22] and the Nambu-Jona-Lasinio model
motivated effective QCD of [11] and [12].

We describe the model in Sect. II and evaluate the
quantum one-loop effective action with instantons as the
classical background. In Sect. III the effective potential is
obtained in the dilute gas approximation for the instan-
tons. The one-loop effective potential is examined for a
non-trivial minimum in Sect. IV and quark mass genera-
tion is studied. The results are summarized in Sect. V.

II The model

The partition function for the model explained in the in-
troduction is

Z =
∫

Dψ̄DψDAµDMDM†ei
∫
d4xL[ψ,ψ̄,Aµ,M,M†] (1)

where ψ is the quark field, Aaµ is the gluon field and M is a
complex Nf ×Nf matrix representing elementary scalars
and pseudoscalars in the adjoint representation. The La-
grangian density in (1) is given by

L(ψ, ψ̄, Aµ,M,M†) = LQCD + +gy(ψ̄LMψR + ψ̄RM
†ψL)

+
1
2
∂µM∂µM†, (2)

where LQCD is the standard QCD Lagrangian with D/ =
∂/−igA/, gy is the Yukawa coupling strength for the interac-

tion between M and ψ. LQCD might contain the topologi-
cal term iθ̄F F̄ although we know that the experimental re-
sults on the neutron dipole moment set θ < 10−9. This La-
grangian density (2) possesses global SU(Nf )L×SU(Nf )R
chiral invariance and of course, SU(3)c local color invari-
ance. It has U(1)V (baryon number) and U(1)A invari-
ances, the latter being broken by quantum corrections,
leaving only a discrete Z(Nf )A symmetry. We evaluate
the partition function, first by going over to Euclidean
space and using the result that there exist, in QCD, non-
perturbative gluon fluctuations viz. the instantons. We
choose the instanton as the background field for gluons.
The gauge fixing and ghost terms are to be introduced
[6] and we suppress them here. They will be incorporated
later. We first integrate over ψ and ψ̄ fields to obtain

Z =
∫

DAµDMDM†e−
∫
d4x[− 1

4F
a
µνF

µνa+iθF̄F ]

det(iD̄/+ReM + iγ5ImM), (3)

where we have expanded Aaµ = Āaµ(instanton) + aaµ and
retained Āaµ(instanton) terms only in the fermion deter-
minant. Accordingly, D̄/ = ∂/− igĀ/ (instanton) and the de-
terminant above is over Lorentz and flavour indices. The
functional integration over Aaµ can be split over instan-
ton locations Āaµ(instanton)and and an integral over the
fluctuations aaµ around the instantons. In the dilute gas
approximation the Gaussian integral over aaµ gives a con-
tribution [6] which we denote by K and the integration
over Āaµ (instanton) is replaced by a summation over in-
stanton winding numbers, apart from an overall Jacobian
for the change of measure. In the evaluation of the fermion
determinant, we first concentrate on the zero modes of the
D̄/ operator, (γ5ψ0 = ±ψ0). For each zero mode, we obtain
detM and detM†. The non-zero mode contribution gives
det ′(−D/2 +MM†). The result of incorporating all of this
is the partition function

Z =
∫

DMDM† ∑
n+

1
n+!

ein+θKn+(detM)n+

∑
n−

1
n−!

ein−θKn−(detM)n−

det ′(−D/2 +MM†)e−
∫
d4x∂µM∂µM†

(4)

where we have taken into account the exchange symmetry
of the instantons. The summations over n+ and n− can
be carried out and the effective action Γ defined through
Z =

∫ DMDM†e−
∫
Γ , can be written down to be

Γ =
1
2
∂µM∂µM† +K detM +K detM†

+ ln det ′(−D/2 +MM†) (5)

where we have set θ = 0.
To recapitulate, the above result shows that with the

model proposed, the effect of the quantum one-loop cal-
culations around an instanton background is to produce
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an effective action (5). This will be the starting point for
the chiral symmetry breaking given in the following sec-
tion. It is necessary to point out that this effective action
is clearly different from the low energy effective actions
employed in the studies of [8], [9] and [10]. To be explicit,
in [8] the effective Lagrangian of ’t Hooft [6] has been used
which is different from what we have obtained above. In [9]
and [10] although they do have the fermion determinant,
the mass term is generated from the Pauli-Villars mass,
a parameter in their approach. In our case, the Yukawa
coupling of M with quark fields is responsible for the ef-
fective action (5). In fact, it is instructive to compare our
effective action with that of [1] and [4]. The point we wish
to emphasize is that the term (detM + detM†) that these
authors add is derived here as a contribution arising out of
the zero modes of the Dirac operator in the instnton back-
ground. The importance of this term (see also [1] and [4])
is to break U(Nf )×U(Nf ) → SU(Nf )×SU(Nf )×U(1)V
which is the quantum symmetry of QCD. To be precise,
the Lagrangian (2) has G = SU(3)c×SU(Nf )×SU(Nf )×
U(1)V × U(1)A symmetries with the generators of G act-
ing on ψ. By integrating out the quark fields, we obtain
our effective action for M which has the same symme-
try G with the generators now acting on M. In other
words, the symmetry of QCD is preserved in our effec-
tive action. The role of the term (detM + detM†) is ob-
tained by considering θ 6= 0, Then we would have got
Kcosθ(detM+detM†)+iKsinθ(detM−detM†). The sec-
ond term violates CP and hence we have to put θ = 0
consistent with the data on the electric dipole moment of
the neutron.

The non-zero mode contribution in (5) is contained in
det ′(−D/2 +MM†). This term does not break U(1)A and
will be a function of MM†. Following ’t Hooft [6], we see
that the regularised product of the non-vanishing eigen
values of (−D̄/2

+MM†) is proportional to the result with
Āaµ = 0, the proportionality constant being dependent on
the instanton quantum numbers (see (6.15) of [6]). There-
fore we write this term as

A ln det ′(−k2 +MM†) (6)

where the constant A contains the effect of instantons
taken to be compact in each small volume ∆V of space-
time and also the ghost determinant arising from gauge
fixing.

III One loop effective potential

We consider a basis in which the complex matrix M is
diagonal with elements λi, (i = 1, . . . , Nf ). This is done
by considering the term (ψ̄LMψR + ψ̄RM

†ψL) in (2). Di-
agonalization of the complex Nf ×Nf matrix M , is done
by independent left and right unitary transformations viz.
U†
LMUR = Λ where Λij = λiδij . This transformation, of

course, introduces a mixing of flavours in ψ; nevertheless,
the strong interaction part ψ̄A/ψ(= ψ̄LA/ψL + ψ̄RA/ψR) is
unaffected by this mixing. In general the diagonal elements

λi’s are complex. Using ε-regularizing scheme (see, for ex-
ample, [21]) we get

A ln det ′(−k2 +MM†) = A ln det ′(−k2 +
∑
i

|λi|2)

' A

Nf∑
i=1

|λi|4 ln(
|λi|2
µ2 ) (7)

where µ is the regularization scale.
Combining all the results, the effective Lagrangian for

M after diagonalisation becomes

Leff =
1
2

∑
i

∂µλi∂
µλ∗

i + Veff , (8)

where

Veff = K

Nf∏
i=1

λi +K

Nf∏
i=1

λ∗
i +A

Nf∑
i=1

|λi|4 ln(
|λi|2
µ2 ) (9)

Note that the first two terms above are a consequence of
the topologically non-trivial instanton background for glu-
ons that we have chosen. Such terms will not be present
in a usual topologically trivial configuration like, for in-
stance, the Saviddy background. This will prove to be
crucial for our purposes.

IV Mechanism of chiral symmetry breaking

The minimum of the effective potential (9) for M will
provide us with the vacuum expectation values for the
diagonal elements of M. We restrict ourselves to Nf = 3.
The minimisation with respect to λ1, λ2, λ3 yields

Kλ2λ3 = −Aλ∗
1|λ1|2(1 + 2 ln(

|λ1|2
µ2 ))

Kλ3λ1 = −Aλ∗
2|λ2|2(1 + 2 ln(

|λ2|2
µ2 ))

Kλ1λ2 = −Aλ∗
3|λ3|2(1 + 2 ln(

|λ3|2
µ2 )) (10)

from which, it immediately follows

|λ1|4(1 + 2 ln(
|λ1|2
µ2 )) = |λ2|4(1 + 2 ln(

|λ2|2
µ2 ))

= |λ3|4(1 + 2 ln(
|λ3|2
µ2 )) (11)

At this stage, the λi’s are constants representing vac-
uum expectation values < M >. In general, the λi’s are
complex. Since however these are now space-time indepen-
dent constants, their phases can be absorbed in UL or UR.
With this provision, the λi’s can be treated as real.

The trivial solution to (11) is of course λ1 = λ2 = λ3 =
0 which corresponds to Veff = 0. However, this solution
set is not admissable since detM is not zero.
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A non-trivial solution to (11) (corresponding to
detM 6= 0) is given by

λ1 = λ2 = λ3 = λ 6= 0 (12)

where
λ = µe−(1+ K

Aλ )/4 (13)

The value of the effective potential is then

Veff (λ1 = λ2 = λ3 = λ) = −2Aλ4(1 + ln(
λ

µ
)) (14)

We require this to be lower than Veff = 0 (no scalar
included) which is possible if

µ < eλ (15)

This sets the energy scale µ for which chiral symmetry
breaking is possible. The symmetric solution (12) sponta-
neously breaks SU(3)L × SU(3)R to SU(3) symmetry.
Fluctuating M against the VEV in (12) and using (2),
the symmetry breaking gives rise to masses for the quarks

mu = md = ms = gyλ. (16)

Thus, this model provides us with an explicit realization
of chiral symmetry breaking through instantons, due to
the presence of fundamental scalars. With ms ' 300 MeV
(effective strange quark mass, see, for example, the Parti-
cle Data Booklet), gyµ < 600 MeV which sets the scale in
this model for chiral symmetry breaking.

The minimization condition also provides us with a
more phenomenologically realistic scenario where all the
quark masses are not equal. For this, we will assume that
λ1 = λ2 = λ 6= λ3. In particular we look for a solution for
which λ3 = aλ, such that

mu = md 6= ms (17)

Substituting in the minimization condition (11), the result
λ3 = aλ, we get the following equation

a4

1 − a4 ln a2 =
1
2

+ ln(
λ2

µ2 ). (18)

This equation is numerically solved for many representa-
tive values of a. In particular we choose values of a =
20 − 40 as the ratio of the s current quark mass to the
u (or d) current quark mass. This immediately gives us a
value of µ ' 26−27λ which for gy ∼ 1 gives µ ' 230MeV,
consistent with our previous estimate µ < 600 MeV. We
have broken the degeneracy between the quark masses be-
tween the s quark and the two lighter quarks, thereby
breaking the SU(3) flavour symmetry to isospin (SU(2))
and strangeness (U(1)). This kind of sequential symme-
try breaking was envisaged long ago by Gell-Mann [22] by
introducing (ψ̄LMψR + ψ̄RM

†ψL) as an ideal pattern of
couplings to “mesons”. He added two types of terms; one is
u0 ∼ −mψ̄ψ which corresponds to, in our case λ1 = λ2 =
λ3 = λ (16) and a term u8 ∼ m02(N̄N − 2λ̄λ) (in the no-
tation of [22]) which corresponds to λ1 = λ2 = λ;λ3 6= λ,

corresponding, in our case to (17). In this way, the effect of
the u0 and u8 terms of Gell-Mann, which have been intro-
duced later by many other authors (see, for example, [4]),
can be reproduced from the solution (11) of the minimum
of the effective potential in our model. With the addition
of these terms, the study of the effective action (5) pro-
ceeds along the lines elucidated by Raby, by expanding
< M > around < M >0.

V Conclusion

A mechanism for producing chiral symmetry breaking in
QCD with scalars is demonstrated. The model Lagrangian
has the same symmetry properties as QCD. The effective
potential for the “field” M is obtained in an instanton
background and is shown to have a non trivial minimum.
This expectation value generates masses for the quarks
due to the breakdown of chiral symmetry. The method
of Raby of introducing tadpole terms to break the SU(3)
flavor symmetry is realized here by the minimization con-
dition with mu = md 6= ms.

The crucial role of the effective potential (9) can be ap-
preciated by comparing it with the situation where there
are no instantons, like that of the Saviddy background
field, for example. In this case one introduces a mass term
for the quarks, evaluates the one-loop effective potential
and demands a minimum lower than zero when the mass of
the quark goes to zero. This is known not to produce chi-
ral symmetry breaking since Veff ∼ αm4+βm4 ln(m2/µ2)
whose minimum value is zero when m2 → 0. In our case,
the effective potential is given by (9) and none of the λ’s
can equal zero since detM 6= 0 always. (In the case of
SU(2) for example, detM = −(φ2

1 + φ2
2 + φ2

3) for M =
φaτa). So the analogous step of m → 0 does not arise in
our case. The introduction of elementary scalars through
a σ-model type of interaction with scalars and pseudo-
scalars gave rise to the effective potential (9). The min-
imisation of this gives the VEV for M and when M is
expanded about this VEV, produces a mass term for the
quark through the Yukawa coupling in (2). Thus a vacuum
of the theory that is not chirally invariant (as dictated by
QCD sum rules and other studies) has been obtained.
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